Thermodynamics of the Glassy State

Hardcover
from $0.00

Author: L. Leuzzi

ISBN-10: 0750309970

ISBN-13: 9780750309974

Category: Glass & Ceramics - Materials Science

In the past thirty years, the area of spin glasses has experienced rapid growth, including the development of solvable models for glassy systems. Yet these developments have only been recorded in the original research papers, rather than in a single source. Thermodynamics of the Glassy State presents a comprehensive account of the modern theory of glasses, starting from basic principles (thermodynamics) to the experimental analysis of one of the most important consequences of...

Search in google:

In the past thirty years, the area of spin glasses has experienced rapid growth, including the development of solvable models for glassy systems. Yet these developments have only been recorded in the original research papers, rather than in a single source. Thermodynamics of the Glassy State presents a comprehensive account of the modern theory of glasses, starting from basic principles (thermodynamics) to the experimental analysis of one of the most important consequences of thermodynamics-Maxwell relations.After a brief introduction to general theoretical concepts and historical developments, the book thoroughly describes glassy phenomenology and the established theory. The core of the book surveys the crucial technique of two-temperature thermodynamics, explains the success of this method in resolving previously paradoxical problems in glasses, and presents exactly solvable models, a physically realistic approach to dynamics with advantages over more established mean field methods. The authors also tackle the potential energy landscape approach and discuss more detailed theories of glassy states, including mode coupling, avoided critical point, replica, and random first order transition theories.This reference lucidly explores recent theoretical advances in the thermodynamics of slowing-aging (glassy) systems. It details the general properties of glassy states while also demonstrating how these properties are present in specific models, enabling readers to thoroughly understand this fundamental yet challenging area of study.

Preface     VAcknowledgements     VIIAcronyms     XISymbols     XIIIIntroduction     1Theory and phenomenology of glasses     15Processes, timescales and transitions     15Dynamical glass transition     17Thermal glass transition     19Strong and fragile glass formers     23Aging     26Time sector separation     28Configurational entropy     29Kauzmann paradox     30Static phase transition and Kauzmann temperature     31"Classic" versus "modern" configurational entropy     31An intrinsically dynamic "state" function     33Adam-Gibbs entropic theory     34Absence of flow in cathedral glasses     37Fragility index     38Kovacs effect     39Two temperature thermodynamics     43Elements of thermodynamics     46First law and second law     46Clausius-Clapeyron relation     47Maxwell relation     48Keesom-Ehrenfest relations and Prigogine-Defay ratio     48Fictive temperature     50Two temperaturethermodynamics     53Two temperature thermodynamics for glassy systems     55Laws of thermodynamics for off-equilibrium systems     56Maxwell relation for aging systems     58Generalized Clausius-Clapeyron relation     59Keesom-Ehrenfest relations and Prigogine-Defay ratio out of equilibrium     60Laws of thermodynamics for glassy magnets     64Effective temperature in thermal cycles     65Fluctuation formula and effective temperatures     70Fluctuation and dissipation out of equilibrium     72Fluctuation-dissipation ratio     74Limits to the role of FDR as a temperature     81Direct measurement of the effective temperature     83Asymptotic solution in nonlinear cooling     87Exactly solvable models for the glassy state     89Harmonic oscillator model     91Analytically solvable Monte Carlo dynamics     92Parallel Monte Carlo versus Langevin dynamics     96Kinetic models with separation of timescales     99Statics and phase space constraint     101Parallel Monte Carlo dynamics of the HOSS model: equations of motion     104Dynamics of the strong glass model     106Dynamics of the fragile glass model     109Adam-Gibbs relation in the HOSS model     115Out-of-equilibrium thermodynamics     116Quasi-static approach     116Effective temperature from generalized laws     118Dynamic transition rate and effective temperature     120FDR and effective temperature     123Heat flow of [alpha] processes     131Effective temperature from a fluctuation formula     131Below the Kauzmann transition     132Instantaneous relaxation time     134Kovacs effect: limits of two temperature thermodynamics     135Analytical solution in the long-time regime     138Effective temperature and effective field     140Measuring effective temperature in HO models     142Heat flux between off-equilibrium systems     144Mode-dependent effective temperature     146Quasi-static effective temperature     148Mode-dependent fluctuation-dissipation ratio     149Transition rate effective temperature     150HOSS equations of motion for one-time variables     152Strong glass     152Fragile glass     152Analytic expressions for the Kovacs effect      157Monte Carlo integrals in one- and two-time dynamics     158Coefficients of the two-time variables equations     160Aging urn models     163The backgammon model     166Equilibrium thermodynamics     167Dynamics     170Adiabatic approximation and effective temperature     174Entropic barriers and a microcanonic derivation of the equation of motion     178Backgammon random walker     179Two-time dynamics and FDR effective temperature     181Effective temperature(s) in the backgammon model     184A model for collective modes     185Observables and equilibrium     187Dynamics of the disordered backgammon model     190Relaxational spectrum in equilibrium     196Specific examples of continuous energy distribution     197A method to determine the threshold energy scale     201Occupation probability density equations     203Ansatz for the adiabatic approximation     205Approach to equilibrium of occupation densities     207Probability distribution of proposed energy updates     208Glassiness in a directed polymer model     211The directed polymer model      212Disordered situation and Lifshitz-Griffiths singularities     213Static phase diagram     216Dual view in temperature     218Directed polymer dynamics     219Cooling and heating setups     223Poincare recurrence time     223Potential energy landscape approach     225Potential energy landscape     228Steepest descent     229Features of the PEL description borrowed from vitreous properties     231Inter- and intra-basins transitions: scales separation     232Inherent structures distribution: formal treatment     233Harmonic approximation     236Thermodynamics in supercooled liquids     237Inherent structure pressure     237Random energy model and Gaussian approximation     239Equation of state     241IS equation of State     243The solid amorphous phase     244PEL effective temperature from direct comparison to the aging dynamics     245PEL effective temperature and pressure in the two temperature thermodynamic framework     246The pressure in glasses     249Fragility in the PEL     251PEL approach to the random orthogonal model     253Effective temperature in the ROM     254PEL approach to the harmonic oscillator models     256PEL effective temperature in the HOSS model     259Quasi-static definition of IS effective temperature     261Many-body glassy models     264Soft spheres     265Lennard-Jones many-body interaction potential     266Lewis-Wahnstrom model for orthoterphenyl     267Simple point charge extended model for water     268Theories of the glassy state     269Mode-coupling theory     269Replica theory for glasses with quenched disorder     274The random energy model     275The p-spin model     276Complexity     279Mean-field scenario     281Glass models without quenched disorder: clone theory     283Equilibrium thermodynamics of the cloned m-liquid     283Analytic tools and specific behaviors in cloned glasses     285Effective temperature for the cloned molecular liquid     287Frustration limited domain theory     289Geometric frustration     289Avoided critical point     291Critical assessment of the approach     294Heuristic scaling arguments     297Random first order transition theory     298Adam-Gibbs theory, revisited     300Entropic driven "nucleation" and mosaic state     301Density functional for the RFOT theory     305Beyond entropic driving I: droplet partition function     311Beyond entropic driving II: library of local states     315Bibliography     319Index     339