Residual Stress Measurement and the Slitting Method

Hardcover
from $0.00

Author: Weili Cheng

ISBN-10: 038737065X

ISBN-13: 9780387370651

Category: Structural Engineering - General & Miscellaneous

Search in google:

Residual Stress Measurement and the Slitting Method provides complete coverage of the slitting method with new results in analysis, computation and estimation. It discusses different roles of residual stresses from the fracture mechanics perspective. Covering both near-surface and through-thickness residual stress measurements, the book serves as a reference tool for graduate students, researchers and practicing engineers. The authors include discussions on the general expressions for residual stresses acting on the site of a slit, the analysis based on fracture mechanics solutions and finite element computations, the estimations using continuous and piecewise functions with and without least squares fit, examples of residual stress measurement and error analysis, the measurement of stress intensity factors, and many more timely topics.With more than 130 figures, Residual Stress Measurement and the Slitting Method provides detailed formulations and examples of compliance functions, weighted least squares fit and convergence test in stress estimation, and computer programs to facilitate the implementation of the slitting method. This book is an invaluable reference for professionals and researchers in the field.

Introduction to Residual Stresses     1What are residual stresses?     1Influence of Residual Stresses     2Mechanical Methods for Residual Stress Measurement     4About This Book     7Elements of Measurement Using the Slitting Method     9Linear Elasticity and Superposition Principle     9Expressions for Approximation of Residual Stresses     11Experimental Procedures     17The Body Force Approach for Near-Surface Measurement     19Introduction     19Analysis     20Results     25Comparison of Cuts with Circular Bottom and Flat Bottom     29Discussion     30The LEFM Approach for Through-Thickness Measurement     33Introduction     33An Edge-Cracked Beam     33Normal Stress on Crack Faces     33Shear Stresses on Crack Faces     40An Edge-Cracked Circular Body     42A Thin-Walled Cylinder With a Circumferential Crack     45A Ring With a Radial Crack     49Discussion     51The FEM Approach for Through-Thickness Measurement     53Introduction     53General Consideration in Finite Element Mesh     53Typical Geometries Analyzed by the FEM     59An Edge-Crack at a T-Joint Weld or a Fillet Weld     59A Slot of Finite Width in a Thin Specimen     61The Use of 2-D FEM for 3-D Problems     64Discussion     68Estimation of Residual Stresses     69Introduction     69Approximation Using a Power Series     73Least Squares Fit for Stress Estimation     73Properties of Compliance Matrices     75Approximation Using Polynomial Series     76Series for Through/Partial-Through-Thickness Measurement     78Weighted LSF for Through-Thickness Measurement     80Approximation Using Strip-Loads     82Error Analysis     84Discussion     87Overlapping-Piecewise Functions for Near-Surface Measurement     88Influence of Error on Overlapping-Piecewise Functions     93Configurations Analyzed by the Compliance Method     98Conclusion     102Measurement of Through-Thickness Residual Stress     103Introduction     103A Case Study: Through-Thickness Residual Stress in a Beam      103Dominant Variation in Stress Estimation     108Error in Through-Thickness Measurement     111Conclusion     115Measurement of Axisymmetric Residual Stresses     117Measurement Using Two Axial Cuts     117Introduction     117Analysis of Axisymmetric Residual Stresses in Plane Strain     118Determination of the Axial Residual Stress in a Water-Quenched Cylinder     121Discussion     122The Single-Slice Approach for Axisymmetric Stresses     122Introduction     122Estimation of the Axial Residual Stress     123The Choice of the Functions S[subscript i](r)     126Determination of the Hoop and Radial Stresses in Plane Strain     127Plane Strain and the Choice of the Slice Thickness     128An Additional Experimental Feature     130Experimental Validation     131Discussion     133Estimation Using Initial Strains     135Introduction     135Initial Strain Approach for the Crack Compliance Method: Axial Stress in a Beam     138Initial Strains Approach for the Single-Slice Method: Axial Stress in a Rod     140Experimental Validation      143Application: Residual Stress in a Pyrolytic Carbon Coated Graphite Leaflet     146Discussion     151Residual Stresses and Fracture Mechanics     153Introduction     153Influence of Residual Stress on Fracture Strength of Glass     153Surface Compressive Residual Stresses and Surface Flaw Detection     155Measurement of Stress Intensity Factors Using the Slitting Method     159Discussion     163K[subscript I] and K[subscript II] Solutions for an Edge-Cracked Beam     165An Expression for K[subscript I]     165An Expression for K[subscript II]     166Stresses Due to Point Forces     167C Subroutines for the Calculation of Polynomial Series     169Chebyshev Polynomials     169Legendre Polynomials     172Jacobi Polynomials     174K[subscript I] Solution for an Edge-Cracked Disk     177Analysis     177Results     180Stress Variation With the Location of the Virtual Forces on a Disk     183Nonuniform Strain over a Gage Length     185C++ Programs for the Calculation of Eq. (10.24)     189PointF Class Header - Listing of PointF.h     189Code for Class Definition - Listing of PointF.cpp     190Sample Code for Usage of Class PointF     194References     197Index     205